

Reporting Year 2012

Presented By____ City of Belton

PWS ID#: 1010061

Meeting the Challenge

The City of Belton is proud to present its annual water quality report. This report details all drinking water tests performed between January 1 through December 31, 2012. The City of Belton's team is committed to delivering the best-quality drinking water possible. Our team remains vigilant in meeting the challenges of new regulations, protection of water supply, water conservation, aging infrastructure needs, water storage needs, and future plans for system improvements while continuing to serve the needs of all water users. Thank you for your support as we continue our mission to be the best in providing you and your family with quality drinking water.

Community Participation

The City Council meets on the second and fourth Tuesdays of each month at the Belton City Hall Annex, 520 Main Street, at 7:00 p.m. All meetings are open to the public; however, if you have any concerns about your water and wish to participate, you must call the city clerk the Thursday before the scheduled meeting you wish to attend and have your name added to the City Council agenda.

Where Does My Water Come From?

The City of Belton receives drinking water from the Kansas City Water Plant (Missouri). The Kansas City Water Plant draws and treats water from the Missouri River and two deep-well aquifers. In order to obtain a copy of Kansas City's Source Water Assessment, please contact Chuck McCulloh, Water Services Manager, or Don Tyler, Water Services Foreman, Belton City Hall, 506 Main Street, Belton, Missouri, 64012, or call (816) 322-1885. You can also visit Kansas City Water Services at www. kcmo.org. Under the City Departments section, click the "Water Services" tab, then click "Informational Links in Water Services" for more information about water quality.

Important Health Information

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants may be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The U.S. EPA/CDC (Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at (800) 426-4791 or http://water.epa.gov/drink/hotline.

Lead in Home Plumbing

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high-quality drinking water but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline (800) 426-4791 or at www.epa.gov/safewater/lead.

Information on the Internet

The U.S. EPA Office of Water (www.epa.gov/watrhome) and the Centers for Disease Control and Prevention (www.cdc.gov) Web sites provide a substantial amount of information on many issues relating to water resources, water conservation, and public health. Also, the Missouri Department of Natural Resources has a Web site (www.dnr. mo.gov) that provides complete and current information on water issues in Missouri, including valuable information about our watershed.

Water Conservation

You can play a role in conserving water and save yourself money in the process by becoming conscious of the amount of water your household is using and by looking for ways to use less whenever you can. It is not hard to conserve water. Here are a few tips:

QUESTIONS?

For more information about this report, or for any questions relating to your drinking water, please call Chuck McCulloh, Water Services Manager, or Don Tyler, Water Services Foreman, at (816) 322-1885.

- Automatic dishwashers use 15 gallons for every cycle, regardless of how many dishes are loaded. So get a run for your money and load it to capacity.
- Turn off the tap when brushing your teeth.
- Check every faucet in your home for leaks. Just a slow drip can waste 15 to 20 gallons a day. Fix it and you can save almost 6,000 gallons per year.
- Check your toilets for leaks by putting a few drops of food coloring in the tank. Watch for a few minutes to see if the color shows up in the bowl. It is not uncommon to lose up to 100 gallons a day from an invisible toilet leak. Fix it and you save more than 30,000 gallons a year.
- Use your water meter to detect hidden leaks. Simply turn off all taps and water-using appliances. Then check the meter after 15 minutes. If it moved, you have a leak.

What Are PPCPs?

When cleaning out your medicine cabinet, what do you do with your expired pills? Many people flush them down the toilet or toss them into the trash. Although this seems convenient, these actions could threaten our water supply.

Recent studies are generating a growing concern over pharmaceuticals and personal care products (PPCPs) entering water supplies. PPCPs include human and veterinary drugs (prescription or over-the-counter) and consumer products, such as cosmetics, fragrances, lotions, sunscreens, and house cleaning products. Over the past five years, the number of U.S. prescriptions increased 12 percent to a record 3.7 billion; while nonprescription drug purchases held steady around 3.3 billion. Many of these drugs and personal care products do not biodegrade and may persist in the environment for years.

The best and most cost-effective way to ensure safe water at the tap is to keep our source waters clean. Never flush unused medications down the toilet or sink. Instead, check to see if the pharmacy where you made your purchase accepts medications for disposal, or contact your local health department for information on proper disposal methods and drop-off locations. You can also go on the Web at www.Earth911.com/tour to find more information about disposal locations in your area.

Substances That Could Be in Water

To ensure that tap water is safe to drink, the U.S. EPA prescribes regulations limiting the amount of certain contaminants in water provided by public water systems. U.S. Food and Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of these contaminants does not necessarily indicate that the water poses a health risk.

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals, in some cases, radioactive material, and substances resulting from the presence of animals or from human activity. Substances that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, or wildlife;

Inorganic Contaminants, such as salts and metals, which can be naturally occurring or may result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming;

Pesticides and Herbicides, which may come from a variety of sources, such as agriculture, urban storm water runoff, and residential uses;

Organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and may also come from gas stations, urban storm water runoff, and septic systems;

Radioactive Contaminants, which can be naturally occurring or may be the result of oil and gas production and mining activities.

For more information about contaminants and potential health effects, call the U.S. EPA's Safe Drinking Water Hotline at (800) 426-4791.

You may not be aware of it, but every time you pour fat, oil, or grease (FOG) down your sink (e.g., bacon grease), you are contributing to a costly problem in the sewer collection system. FOG coats the inner walls of the plumbing in your house as well as the walls of underground piping throughout the

community. Over time, these greasy materials build up and form blockages in pipes, which can lead to wastewater backing up into parks, yards, streets, and storm drains. These backups allow FOG to contaminate local waters, including drinking water. Exposure to untreated wastewater is a public health hazard. FOG discharged into septic systems and drain fields can also cause malfunctions, resulting in more frequent tank pump-outs and other expenses.

Communities spend billions of dollars every year to unplug or replace grease-blocked pipes, repair pump stations, and clean up costly and illegal wastewater spills. Here are some tips that you and your family can follow to help maintain a well-run system now and in the future:

NEVER:

- Pour fats, oil, or grease down the house or storm drains.
- Dispose of food scraps by flushing them.
- Use the toilet as a waste basket.

ALWAYS:

- Scrape and collect fat, oil, and grease into a waste container such as an empty coffee can, and dispose of it with your garbage.
- Place food scraps in waste containers or garbage bags for disposal with solid wastes.
- Place a wastebasket in each bathroom for solid wastes like disposable diapers, creams and lotions, and personal hygiene products including nonbiodegradable wipes.

Sampling Results

During the past year, the Water Services team has taken hundreds of water samples in order to determine the presence of any radioactive, biological, inorganic, volatile organic, or synthetic organic contaminants. The table below shows only those contaminants that were detected in the drinking water. The state requires us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently. In these cases, the most recent sample data are included, along with the year in which the sample was taken.

REGULATED SUBSTANCES City of Belton Kansas City SUBSTANCE AMOUNT YEAR MCL MCLG RANGE AMOUNT RANGE (UNIT OF MEASURE) SAMPLED [MRDL] [MRDLG] DETECTED DETECTED LOW-HIGH VIOLATION TYPICAL SOURCE LOW-HIGH Chlorine (ppm) 2012 [4] [4] 1.9 1.2 - 2.21.73-3.29 No Water additive used to control microbes 2.46 4 Erosion of natural deposits; Water additive which promotes Fluoride (ppm) 2012 4 NA NA 0.91 0.18 - 1.27No strong teeth; Discharge from fertilizer and aluminum factories By-product of drinking water disinfection Haloacetic Acids [HAA]-Stage 1 (ppb) 2012 60 NA 14 11.8-16.4 17.1 12.9 - 24.3No Nitrate (ppm) 2012 10 10 NA NA 0.99 ND-3.6 No Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits By-product of drinking water disinfection TTHMs [Total Trihalomethanes]-Stage 1 (ppb) 2012 80 NA 7.9 7.3-8.3 8.4 4.0-14.2 No Total Coliform Bacteria (% positive samples) 5% positive ND NA No Naturally present in the environment 2012 0 NA 1.52 monthly samples Turbidity¹ (NTU) 2012 TΤ NA NA NA 0.10 0.05 - 0.10No Soil runoff Turbidity (Lowest monthly percent of samples TT TΤ NA NA 100% NA Soil runoff 2012 No meeting limit)

Tap water samples were collected for lead and copper analyses from sample sites throughout the community

				City of E	lelton	Kansas City			
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AL	MCLG	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	AMOUNT DETECTED (90TH%TILE)	SITES ABOVE AL/ TOTAL SITES	VIOLATION	TYPICAL SOURCE
Copper (ppb)	2012	1300	1300	4.6	0/30	5	NA	No	Corrosion of household plumbing systems; Erosion of natural deposits
Lead (ppb)	2012	15	0	1.3	0/30	ND	NA	No	Corrosion of household plumbing systems; Erosion of natural deposits

SECONDARY SUBSTANCES (KANSAS CITY)

				Kansas	s City		
SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	SMCL	MCLG	AMOUNT DETECTED	RANGE LOW-HIGH	VIOLATION	TYPICAL SOURCE
pH (Units)	2012	6.5–8.5	NA	9.7	9.0–10.4	No	Naturally occurring

UNREGULATED SUBSTANCES (KANSAS CITY)

SUBSTANCE (UNIT OF MEASURE)	YEAR SAMPLED	AMOUNT DETECTED	RANGE LOW-HIGH	TYPICAL SOURCE
Chloroform (ppb)	2012	5.9	4.1–9.2	By-product of drinking water disinfection
Total Hardness (ppm)	2012	107	89–144	Naturally occurring

¹Turbidity is a measure of the cloudiness of the water. It is monitored because it is a good indicator of water quality and the effectiveness of disinfectants and filtration systems.

Definitions

AL (Action Level): The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

MCL (Maximum Contaminant Level): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

MCLG (Maximum Contaminant Level Goal): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL (Maximum Residual Disinfectant Level): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG (Maximum Residual Disinfectant Level Goal): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

NA: Not applicable.

ND (Not Detected): Indicates that the substance was not found by laboratory analysis.

NTU (Nephelometric Turbidity Units): Measurement of the clarity, or turbidity, of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

ppb (parts per billion): One part substance per billion parts water (or micrograms per liter).

ppm (parts per million): One part substance per million parts water (or milligrams per liter).

TT (Treatment Technique): A required process intended to reduce the level of a contaminant in drinking water.